
University of Massachusetts Boston

CS460 Fall 2020
Github Username: JamesEdMichaud
Due Date: 10/19/2020

Assignment 5: Scene Control with dat.GUI and Transformations!
Welcome back to framework country! This time we will use XTK and Three.js to study rotations.

In class, we connected the dat.gui library with XTK to control properties of a single cube. We also introduced the
transformer object to rotate the cube along the world x and y axis. In this assignment, we will create a website with
two 3D scenes. One scene will be based on XTK, and the other will be based on Three.js. Then, we will use dat.gui
to control objects in the scene. As a final result, each scene will contain two objects. We then can observe two different
ways of rotating objects since XTK and Three.js.

There is no starter code for assignment 5. Please start from scratch and save your code your fork as 05/index.html.

Part 1 Coding: Configure the <div>s. (10 points)

We will create two viewports next to each other. Please add two <div> containers in the body of the HTML document.
Name these containers r1 and r2 using the id property. Then, add styling to the header of the HTML document as follows:

<style>
html, body {

background-color: #000;
margin: 0;
padding: 0;
height: 100%;
overflow: hidden !important;

}
#r1 {

1

dat.gui
transformer
x
y
dat.gui
05/index.html
<div>
<div>
r1
r2

width:50%;
height:100%;
float: left;

}
#r2 {

width:50%;
height:100%;
float:left;

}
</style>

You can verify the placement of the <div> containers using the Web Developer Tools. They should be next to each
other and together, fill the whole window.

Part 2 Coding: Setup the XTK scene. (10 points)

Add the xtk_edge.js and xtk_xdat.gui.js libraries using the <script> tags as we did in class and in assignment
2. Then, create the window.onload function to set up the X.renderer3D and add a single X.cube. Since we place the
renderer into the r1 container, we need to set r.container='r1'; just before calling r.init();. Please check if
the XTK cube appears by reloading the website.

Part 3 Coding: Setup the Three.js scene. (15 points)

For Three.js, please add the three.min.js and TrackballControls.js as we did in assignment 3. Then, fol
low our old code to setup a THREE.Scene with the THREE.PerspectiveCamera, the THREE.WebGLRenderer, the THREE.
AmbientLight, the THREE.DirectionalLight, and the THREE.TrackballControls. Since we now use a <div> con
tainer as our viewport, we need to do the following:

var r2 = document.getElementById('r2'); // get the div container!!!
// ...
var ratio = r2.clientWidth / r2.clientHeight; // use the container's clientWidth and clientHeight

// rather than window.innerWidth and window.innerHeight
// ...
var camera = new THREE.PerspectiveCamera(fov, ratio, zNear, zFar);

var renderer = new THREE.WebGLRenderer({antialias:true});
renderer.setSize(r2.clientWidth, r2.clientHeight); // again use the container
r2.appendChild(renderer.domElement); // and append the domElement to the container

// ...

var controls = new THREE.TrackballControls(camera, r2); // pass the container to the camera

Please don’t forget the animate loop! Then, please add the THREE.BoxBufferGeometry and the THREE.MeshStandardMaterial
to create a new THREE.Mesh and add it to the scene. When you reload the page, there should be now two cubes
one with XTK and one with Three.js!

Part 4 Coding: Connect XTK to dat.GUI to control cube properties. (10 points)

Please create the dat.GUI() user interface for XTK. For this, we will use gui.addFolder and access the visible,
opacity, and color properties as we did in class. After reloading, this should work right away.

Part 5 Coding: Introduce the helper object for dat.GUI. (5 points)

XTK’s properties connect well with dat.GUI but for more advanced functionality, and especially to control Three.js,
we will need a helper object. Please add the following code just before the dat.GUI() setup.

2

<div>
xtk_edge.js
xtk_xdat.gui.js
<script>
window.onload
X.renderer3D
X.cube
r1
r.container='r1';
r.init();
three.min.js
TrackballControls.js
THREE.Scene
THREE.PerspectiveCamera
THREE.WebGLRenderer
THREE.AmbientLight
THREE.AmbientLight
THREE.DirectionalLight
THREE.TrackballControls
<div>
animate
THREE.BoxBufferGeometry
THREE.MeshStandardMaterial
THREE.Mesh
dat.GUI
dat.GUI()
gui.addFolder
visible
opacity
color
dat.GUI
dat.GUI
dat.GUI()

var controller = {

'threejs_color': 0xffffff

};

Part 6 Coding: Connect Three.js to dat.GUI to control cube properties. (5 points)

To connect dat.GUI and Three.js, we will first use gui.addFolder to group the controls. Then, we want to access the
same properties as in the XTK case. However, connecting Three.js with dat.GUI is not as straight forward—even with a
helper object :(. It requires the following code:

var threejsUI = gui.addFolder('Three.js Cube');
threejsUI.add(cube, 'visible');
threejsUI.add(cube.material, 'opacity', 0, 1).onChange(function() {

cube.material.transparent = true;
});
threejsUI.addColor(controller, 'threejs_color').onChange(function() {

cube.material.color.set(controller.threejs_color);
});

threejsUI.open();

After reloading, this should allow to control the visibility, opacity, and color for both the XTK cube and the THREE.js
cube.

Part 7 Coding: Extend the helper object for dat.GUI and rotate both cubes. (10 points)

We now want to rotate both cubes with three buttons. For this, we will add a new folder to dat.GUI as follows:

var both = gui.addFolder('Both Cubes');
both.add(controller, 'rotateX');
both.add(controller, 'rotateY');
both.add(controller, 'rotateZ');
both.open();

Then, we will extend the controller helper object with three rotate methods that rotate by 20 degrees:

var controller = {
'threejs_color': 0xffffff,

'rotateX': function() {
c.transform.rotateX(20);
cube.rotateX(20);

},
'rotateY': function() {

c.transform.rotateY(20);
cube.rotateY(20);

},
'rotateZ': function() {

c.transform.rotateZ(20);
cube.rotateZ(20);

}
};

In the code above, we assume that the XTK cube is accessible as c and the THREE.js cube is accessible as cube.
After reloading, this should allow to rotate the cubes in X,Y, and Z using the three new buttons.

Part 8 Coding: Add a second cube. (10 points)

3

dat.GUI
dat.GUI
gui.addFolder
dat.GUI
dat.GUI
dat.GUI
controller
c
cube

Please extend the controller helper object with a new method ’add new’ and update the dat.GUI controls.

var controller = {
// ...
'add new': function() {

// TODO!
}

};

// ...

both.add(controller, 'add new');
both.open();

Now, please replace the //TODO! above with code that creates for both, XTK and Three.js, a second cube and adds
it the viewport. The new cube should be positioned at (50, 50, 50). After reloading, and pressing ’add new’, both
viewports should show two cubes (maybe hidden by the dat.GUI panel).

Part 9 Explaining: Different rotations? (20 points)

So, if we rotate the cubes before adding the second cube, the rotations in XTK and Three.js are very similar. But,
after adding the second cube the rotations are very different. Please try to explain what happens.

The XTK cubes rotate around the global axes, whereas the threejs cubes rotate around their individual axes.
The rotate_() methods use different frames of reference.

For me, they also rotate in opposite directions.

Part 10 Cleanup: Replace the screenshot above, activate Github pages, edit the URL below, and add this PDF to
your repo. Then, send a pull request or assignment submission (or do the bonus first). (5 points)

Link to your assignment: https://jamesedmichaud.github.io

4

controller
dat.GUI
// TODO!
https://jamesedmichaud.github.io

Bonus (33 points):

We will use spector.js to analyse the two viewports. If you did not install this extension yet, please do so by
following the instructions at https://spector.babylonjs.com/. Then, you can use the extension to capture/record
WebGL activity.

Part 1 (5 points): Please use spector.js to capture the viewport that uses XTK and insert a screenshot here.

5

spector.js
https://spector.babylonjs.com/

Part 2 (5 points): Please use spector.js capture the viewport that uses Three.js and insert a screenshot here.

6

Part 3 (23 points): Compare the spector.js recordings. (a) Please report if either XTK or Three.js use an indexed
geometry. (b) Also, please explore and compare the length of the GLSL shader codes both libraries use. (c) And,
please figure out how the object transformations are passed to the shaders.

(a) I ran the spector.js extension on my assignment 4 solution to see
at a lower level what I could find out. I noticed from the output that
the drawElements command is used to the draw indexed geome
try (ship and wall segments) and that the drawArrays command is
used to draw nonindexed geometry (point obstacles). This makes
sense, because it lines up with the code we wrote for assignment 4.

4 triangles make the ship, and 12 vertices means 12 indices in a
Uint8Array (UNSIGNED_BYTE array). The 0 corresponds to the
’offset’ parameter of the drawElement method. That does some
thing to do with grouping indices (or vertices?) together, like a
uniform offset.

2 triangles per wall segment means 6 indices.

And the single vertex obstacle, drawn using drawArrays. This time
the 0 corresponds to the parameter ”first”, which is the starting
index in the array. The 1 is the number of indices to read from that
index.

From this we can see that threejs uses indexed geometry.

12 triangles per cube results in 36 indices in an UN
SIGNED_SHORT array (it looks like threejs uses Uint16Array’s).
On the XTK side, it looks like indexed geometry is not used. The
drawArrays command is used with 36 indices.

An expanded screenshot of the assign
ment 4 commands on the left.

(b) The XTK vertex shader is 86 lines long and the fragment shader is 103 lines. The threejs vertex shader is 410 lines
and fragment shader is a whopping 1340 lines.

(c) Transformations are passed to the shaders through the buffers?? I’m a bit stumped on where to find this in the
spector.js output. In both cases, only a single frame seemed to be captured by spector.js (3 commands each),
so I couldn’t see any data on the transformations. I know from assignment 4 that I needed to call gl.bufferData()
to update the vertex position of wall segments when being transformed. I could find that in the spector.js output
from assignment 4, but I’m not able to interpret what it means among the 2293 commands that were logged.

That command isn’t present anywhere in the assignment 5 spector.js outputs. It may also be the Framebuffers,
which I see in the assignment 5 spector.js outputs, but not the assignment 4 output.

7

spector.js

