
University of Massachusetts Boston

CS460 Fall 2020
Github Username: JamesEdMichaud
Due Date: 09/30/2020

Assignment 3: Three.js Cubes ... and other geometries
We will use Three.js to create multiple different geometries in an interactive fashion.

In class, we learned how to create a THREE.Mesh by combining the THREE.BoxBufferGeometry and the THREE.
MeshStandardMaterial. We also learned how to unproject a mouse click from 2D (viewport / screen space) to a 3D
position. This way, we were able use the window.onclick callback to move a cube to a new position in the 3D scene.
Now, we will extend our code.

The goal of this assignment is to create multiple different geometries by clicking in the viewport. This means, rather
than moving an existing mesh, we will create new ones in the window.onclick callback. On each click, our code will
randomly choose a different geometry and a random color to place the object at the current mouse position.

Wewill be using six different geometries. Before we start coding, wewant to understand their parameters. Please
complete the table below. You can find this information in the Three.js documentation at https://threejs.org/docs/
(scroll down to Geometries). In most cases, we only care about the first few parameters (please replace the Xs).

Constructor Parameters

THREE.BoxBufferGeometry (width, height, depth)
THREE.TorusKnotBufferGeometry (radius, tubeRadius, tubularSegments, radialSegments)
THREE.SphereBufferGeometry (radius, widthSegments, heightSegments)
THREE.OctahedronBufferGeometry (radius)
THREE.ConeBufferGeometry (radius, height)
THREE.RingBufferGeometry (innerRadius, outerRadius, thetaSegments)

Please write code to create one of these six geometries with a random color on each click at the current
mouse position. We will use the SHIFT-key to distinguish between geometry placement and regular camera movement.
Copy the starter code from https://cs460.org/shortcuts/08/ and save it as 03/index.html in your github fork. This
code includes the window.onclick callback, the SHIFT-key condition, and the unproject functionality.

After six clicks, if you are lucky and you don’t have duplicate shapes, this could be your result:

Please make sure that your code is accessible through Github Pages. Also, please commit this PDF and your
final code to your Github fork, and submit a pull request.

Link to your assignment: https://jamesedmichaud.github.io

1

THREE.Mesh
THREE.BoxBufferGeometry
THREE.MeshStandardMaterial
THREE.MeshStandardMaterial
window.onclick
window.onclick
https://threejs.org/docs/
SHIFT
https://cs460.org/shortcuts/08/
window.onclick
SHIFT
unproject
https://jamesedmichaud.github.io

Bonus (33 points):

Part 1 (5 points): Do you observe Z-Fighting? If yes, when?

Yes. I observed Z-Fighting when two of the same objects were placed close enough together. In particular, cubes
and rings exhibited this behavior the most frequently.

Part 2 (10 points): Please change window.onclick to window.onmousemove. Now, holding SHIFT and moving the mouse
draws a ton of shapes. Submit your changed code as part of your 03/index.html file and please replace the screenshot
below with your drawing.

Part 3 (18 points): Please keep track of the number of placed objects and print the count in the JavaScript console. Now,
with the change to window.onmousemove, after how many objects do you see a slower rendering performance?

I noticed that objects began to be placed farther apart after about 1300, meaning the mouse position was being up-
dated less frequently. At roughly 3300 objects, my browser warned me that the web page is using a significant amount
of energy. At this point it’s noticeably slower, but still somewhat smooth. Once 4500 objects were placed, the delay was
so great that placing new objects slowed down significantly (and became time-consuming).

What happens if the console is not open during drawing?

I seem to have pre-empted this question... I reduced console output by only printing the number of objects at 50 ob-
ject increments. Before doing that, printing to the console could not keep up with the rendering, causing massive delays.

Can you estimate the total number of triangles drawn as soon as slow-down occurs?

Yes. Since we know the shapes being drawn and how many triangles each shape contains. We can adjust things a
bit so that each shape is drawn once before any shape is drawn again. I’ve added an array of shape-generating func-
tions. A shape function is removed from the array when drawn, and the array is re-populated with 1 of each shape and
shuffled when empty. We can calculate how many triangles are drawn for each group of 6 shapes. Divide the total
number of shapes by 6, then multiply by the number of triangles. For example,

TorusKnot Box Sphere Octo Cone Ring Total per 6 1302 objs 3300 objs 4500 objs

Triangles 1024 12 480 8 16 10 1550 669,682 852,500 1,162,500

2

window.onclick
window.onmousemove
SHIFT
03/index.html
window.onmousemove

